CO₂ methanation over Ni nanoparticles dispersed on CeO₂ supports: the effect of support synthesis method and the resulting nano-configurations

Catherin Drosou^{1,a}, Ersi Nikolaraki^{1,b}, Dimitris Gournis^{1,2,c}, Michael A. Karakassides^{3,d}, Ioannis Yentekakis^{1,2,e}

¹School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Crete, Hellas

²Institute of GeoEnergy /Foundation for Research and Technology-Hellas (IG/FORTH), 73100, Chania, Crete, Hellas

³Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, GR.

 $\underline{^a edrosou@tuc.gr, \,^b enikolaraki@yahoo.gr, \,^c dgournis@tuc.gr \,, \\ \underline{^d mkarakas@uoi.gr} \,, \,^e \underline{igentekakis@tuc.gr} \,$

Keywords: Synthesis, catalysts, CO₂ methanation, nanoparticles, Sabatier reaction, support CeO₂, nickel

Abstract.

CO₂ methanation reaction, also known as Sabatier reaction, is an exothermic process that converts CO₂ into methane using H₂ as a reducing agent (CO₂ + 4H₂ \rightleftharpoons CH₄ + 2H₂O, Δ H_{298K} = -164 kJ/mol). Sabatier reaction can be considered an alternative strategy for capturing and recycling emitted CO₂, offering significant potential for reducing fossil fuel dependence and consequently lowering atmospheric CO2 concentration levels. Additionally, it can serve as a safe and efficient method for storing and transporting H₂, as part of the Power-to-Gas (PtG) process. This approach helps overcome the safety challenges and high costs associated with transporting H₂ produced from renewable energy sources. In present study, the effect of the CeO₂ support synthesis method and the resulting nanostructures was investigated. Two different synthesis approaches were employed to obtain nanorods (CeO₂-NR) and irregular nanostructures (CeO₂-PR): a simplified hydrothermal method and a conventional co-precipitation method. The active Ni phase (10% Ni) was deposited onto the supports using the wet impregnation method. The catalytic performance and stability of the above materials were examined over CO2 methanation reaction through kinetic experiments conducted over a temperature range of 150-600°C, as well as 12-hour stability tests at 380°C. The experimental conditions were as follows: H_2/CO_2 ratio = 4/1, balanced with Ar, with a total flow rate of $F_t = 19$ cc/min and a catalyst mass of $m_{at} = 60$ mg. Additionally, the physicochemical and chemical properties of CeO₂ supports and counterpart catalysts were evaluated using various characterization techniques (BET, XRD, Chem-H₂, H₂-TPR, SEM, and TEM) to establish correlations between their activity and structural features. The supports synthesis method plays a crucial role in the performance of catalytic materials, as it affects the degree of nickel (Ni) dispersion and metal-support interactions. Notably, nanostructured supports like nanorods enhance nickel (Ni) catalysts, achieving up to 90% methane yield, at 355°C. These innovative materials, with specialized nanoconfigurations, offer both exceptional catalytic performance and improved stability, positioning them as promising materials in catalytic technology and methane production processes.

Authors' background

Your Name	Title	Research Field	Personal website
Catherin	Postdoc	Catalysis	https://www.researchgate.net/profile/Catherine-Drosou,
Drosou		-	
Ersi	PhD candidate	Catalysis	
Nikolaraki		-	
Dimitris	Full professor	Chemistry of	https://www.pccplab.tuc.gr/en/home
Gournis		Nanomaterials	
Michael	Full professor	Ceramics, porous and	http://www.materials.uoi.gr/ccl/BHMM-About.html
Karakassides		composite materials	
Ioannis	Full professor	Physical Chemistry:	https://www.pccplab.tuc.gr/en/home
Yentekakis	-	Heterogeneous	
		Catalysis;	
		Environmental	
		Catalysis	